

SESQUITERPENE LACTONES AND OTHER CONSTITUENTS OF *ARNICA ACAULIS*

WERNER HERZ and VIRGINIA E. SOSA

Department of Chemistry, The Florida State University, Tallahassee, FL 32306, U.S.A.

(Received 24 February 1987)

Key Word Index—*Arnica acaulis*; Heliantheae; Compositae; helenanolides; melampolides; *trans*-fused guaianolides; sesquiterpene lactones; flavonoids.

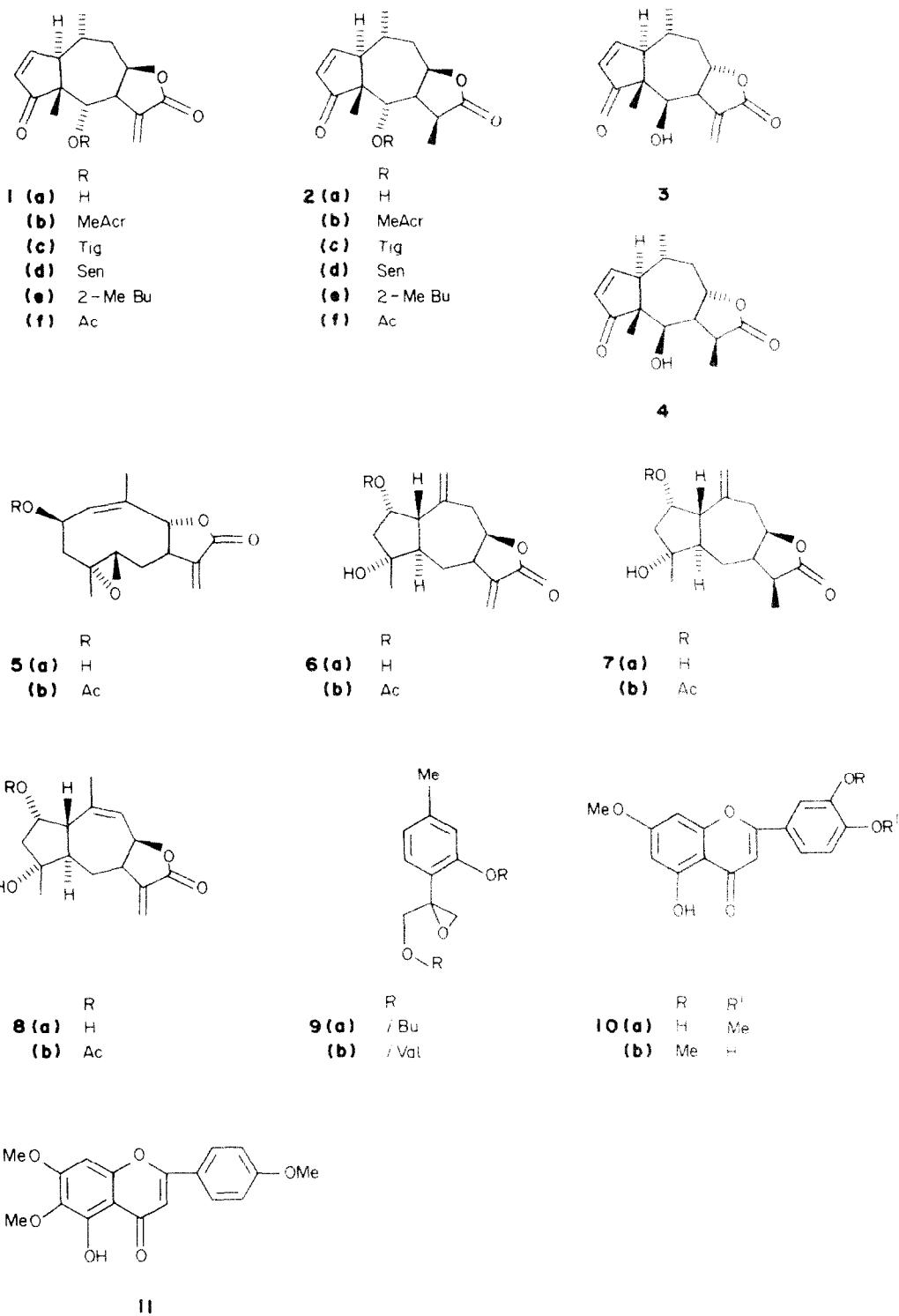
Abstract—Chemical investigation of the aerial parts of *Arnica acaulis* resulted in isolation of 12 known helenanolides, one new melampolide baileyin acetate and the *trans*-fused guaianolides florilenalin acetate and 11 α H,13-dihydroflorilenalin acetate as well as other relatively common plant constituents. The implications for the biogenesis of helenanolides and the chemotaxonomic situation in *Arnica* are discussed.

INTRODUCTION

Arnica (Compositae) is a circumboreal predominantly montane genus of about 32 species most of which are confined to western North America [1]. Its tribal position, traditionally within the Senecioneae, has been the subject of considerable discussion [2-4]. On morphological, serological and chemical grounds it has been argued that its affinities are with the Heliantheae rather than with the Senecioneae; thus the most recent treatment of Heliantheae [5] includes *Arnica* and its close relatives in subtribe Chaenactidinae which in turn appears to be closely related to subtribe Gaillardiinae.

The chemical evidence which has been adduced in support of this relationship [5] includes *inter alia* the discovery [6-8] in *A. foliosa* Nutt. [*A. chamissonis* Less. ssp. *foliosa* (Nutt.) Maguire] and *A. montana* L. of sesquiterpene lactones of the helenanolide type which are characteristic constituents of Gaillardiinae. Because of the role which *Arnica montana*, the only member of the genus found in Europe, plays in European popular medicine its chemistry and that of a few other *Arnica* taxa has been studied more thoroughly in recent years [9-22]. This has resulted in the isolation of an additional number of helenanolides with the biological effects of the drug being attributed primarily to helenalin (**1a**) and some of its derivatives.

The only *Arnica* species found in North America east of the Mississippi and south of the Adirondacks is *A. acaulis* (Walt.) B.S.P. According to Maguire [1] it has no near relative in North America while its general habitat and character of pubescence strongly suggest it to be an offshoot of European *A. montana*. It was therefore of interest to compare the chemistry of the two species. In the present report we describe isolation from *A. acaulis* of the sesquiterpene lactones **1a-e**, **2a-e**, **3,4,5b,6b** and **7b**, the


thymol derivative **9a** and the flavones pilloin (**10a**) and salvigenin (**11**).

RESULTS AND DISCUSSION

Extraction of the aerial parts of *A. acaulis* furnished a complex mixture of the known helenanolides **1a-e**, **2a-e**, **3** and **4** which were identified by comparison with authentic samples or by comparison with ¹H NMR spectra of esters of helenalin (**1a**) and 11 α H,13-dihydrohelenalin (**2a**) recorded in the literature. Lactones **3** (mexicanin I) and **4** (11 α H,13-dihydromexicanin I) have not been reported previously from *Arnica*.

A new crystalline lactone was the acetate **5b** of a C-8 lactonized melampolide baileyin (**5a**) from *Baileya pleniradiata* and *B. multiradiata* [23, 24], as shown by the ¹H and ¹³C NMR spectra (Tables 1* and 2), extensive decoupling and the observation of a significant NOE between H-1 and H-14 (Table 3). The H-2 β , H-8 β -stereochemistry originally suggested [24] for baileyin was speculative due to uncertainty about the conformations adopted by C-8 *cis*- and C-8 *trans*-lactonized melampolides. Since then it has been shown in the case of schkuhriolide and its derivatives [25-27] that the conformation of such C-8 *cis*-lactonized melampolides is similar to C-6 *trans*-lactonized members of this class, i.e. ¹D₁₄, ¹⁵D₅ [28], and gives rise to values of $J_{7,13} < 3$ Hz, whereas C-8 *trans*-lactonized melampolides exemplified by frutescin [29, 30] assume the ¹D¹⁴, ¹⁵D₅ conformation. Associated with this conformation of C-8 *trans*-lactonized melampolides are values of $J_{7,13} > 3$ Hz, an upfield shift of H-8 to δ 3.8-4.0⁺ and relatively large values of $J_{7,8}$ [29-31]. All this is clearly the case for **5a,b** which are therefore C-8 *trans*-lactonized. Inspection of the model constructed in accordance with Fig. 1 of ref [30] then requires β -orientation of the 2-hydroxy or acetoxy group to accommodate the values of $J_{1,2}$, $J_{2,3a}$ and $J_{2,3b}$; moreover the model and the H-2 α ,H-8 β stereochemistry deduced from it for **5a,b** are in highly satisfactory agreement with the NOE difference spectrum of **5b**.

* Table 1, column 1 of ref. [24] which lists the ¹H NMR spectrum of baileyin contains an erroneous assignment and several misprints. For this reason the correct NMR spectrum of **5a** is reproduced in Table 1.

[†]A multiplet appearing at δ 3.75 in the ^1H NMR spectrum of the C-8 *trans*-lactonized melampolide soulangianolide B has been ascribed to H-7[32]. The chemical shift of the H-8 signal was not reported. In the light of the preceding discussion it appears to us that the δ 3.75 signal of soulangianolide B is associated with H-8 and that the H-7 signal is found at higher field as usual.

detailed in Table 3. The CD curves of **5a** and **5b** exhibit positive maxima for the π,π^* -transition of the α,β -unsaturated lactone chromophore, hence the formulas also represent the absolute configurations (2*R*, 4*R*, 5*R*, 7*R*, 8*S*) of these compounds.

Table 1. ^1H NMR data for compounds **5a**, **5b**, **6a** and **7b** (270 MHz, CDCl_3)

Hydrogen	5a*	5b	6b	7b†
1	5.33 br d (10)	5.28 br d (10)	1.93 br d (15)	1.90 br d (15)
2	4.69 m (10, 10, 6)	5.60 dt (6, 10)	5.29 br dd (6, 2.5)	5.16 br t (5.5)
3 α	2.62 dd (12, 6)	2.58 dd (11, 6)	2.20 dd (16, 6)	
3 β	1.27 dd (12, 10)	1.33 t (11)	~2.06	
5	2.37 br d (12)	2.73 dd (10, 1)	~2.18	
6 α	2.33 br d (15)	2.39 br d (15)	2.10	
6 β	1.4 m	1.46 dt (15, 10)	1.53 m	
7	2.85 m	2.95 m (10, 6.5, 3.3, 2.9)	3.24 m	3.06 m
8	4.05 dd (12, 9)	4.06 ddd (10.5, 6.5, 1.5)	4.62 br ddd (11, 8, 4)¶	4.55 ddd (11, 8, 3.5)
9 α	2.47 t (12)	2.46 dd (13, 10.5)	2.72 br dd (13, 4)¶	
9 β	2.79 br d (12)§	2.79 br d (13)§	2.32 tt (13, 11)	
13a	6.37 d (3.5)	6.35 d (3.3)	6.30 d (2.9)	2.50 m (H-11)
13b	5.67 d (2.7)	5.67 d (2.9)	5.69 d (2)	1.19 d (7)†
14	1.85 br (1)†	1.95 br d (1)†	5.07 br	5.11 br
			4.89 br	5.01 br
15†	1.18	1.20 br	1.22 s	1.19 s
Ac†	—	2.03 s	2.06s	2.08 s

* Taken from ref. [24] with corrections.

† Intensity three protons.

‡ Taken from mixture with **6b**.

§ Long range coupled to H-14.

|| $J_{6a,7}$ 2Hz, $J_{6b,7}$ = 12Hz.¶ Also coupled to H-14a at δ 5.07.Table 2. ^{13}C NMR data for compounds **5b** and **6b** (67.89 MHz, CDCl_3)

Carbon	5b	6a
1	127.87 d	53.34 d†
2	68.67 d*	73.89 d
3	46.93 t*	49.19 t
4	59.93 s	78.50 s
5	66.10 d*	51.69†
6	43.23 t	29.64 t*
7	46.23 d	39.66 d
8	83.61 d*	80.33 d*
9	30.98 t*	29.87 t*
10	138.94 s	139.94 s‡
11	133.03 s	139.27 s‡
12	168.63 s	169.68 s
13	121.81 t	122.54 t
14	18.18 q*	115.58 t
15	17.14 q*	25.32 q
Ac	170.16 s	170.55 s
	20.99q	21.28 q

* Assignment confirmed by single frequency decoupling.

†,‡ Assignments may be interchangeable.

Two additional non-crystalline lactones, the second obtained only in admixture with the first, were **6b** and its 11,13-dihydro-derivative **7b**. That these substances were C-8 lactonized guianolides with a tertiary hydroxyl group on C-4 or C-10 and an exocyclic methylene group on C-10 or C-4 was evident from the ^1H NMR spectra (Table 1), the ^{13}C NMR spectrum of **6b** (Table 2) and

Table 3. NOE difference spectrum of compound **5b**

Saturation	Observed NOE (%)
H-1	3 β (8.3)
	14 (8.3)
	15 (7)
	Ac (8.3)
H-2 and H-13b	3 α (11.4)
	5 (11.4)
	6 α (11.3)
	9 α (11.3)
H-8	6 β (8.2)
	9 β (8)
	14 (12.3)
	15 (8.2)
H-14	1 (6.7)
	8 (13)
H-15	8 (8.9)

extensive decoupling in the usual way, beginning with irradiation at the frequencies of H-13a,b, which established the location of the H-7 signal and eventually led to formulation of the entire sequence C-3, C-2, C-1, C-6, C-7, C-8, C-9. As H-8 under the lactone oxygen and one of the two C-9 protons were both coupled to one of the two non-conjugated vinylic protons, the exocyclic methylene group was attached to C-10. The *trans*-fusion of the bicyclo(5,3,0) system followed from the very large coupling constants involving H-1 and H-5, with the remaining features of the stereochemistry also being deduced from the coupling constants. Thus **6b** was a double bond isomer of pleniradin acetate (**8b**), a derivative

oi pleniradin 18a) from *Bailey pleniradiata* [33.1 and *multiradiata* [34], whose structure has been deduced by X-ray analysis [24]. For the IH NMR spectrum of 8b, see Table 1, column 2 of ref. [24]. A search of the literature then revealed that 6b and 7b, although new as natural products, had been prepared earlier from floriferin (6a), resp. dihydrofloriferin (7a). Two minor constituents of *ttheonium autumnale* collection from north Florida were also established crystallographically [24].

Our discovery of 6b and 7b in *A. a-uu-i*, is the second instance in which representatives of the trilactone tris, postulated to lie on the biogenetic pathway to helenanolides [37] have been isolated from the satnc collection as the presumed end products, the first being the isolation of 6a and 8a from *Baileya* species [24]. Indeed the \sim l- \sim SD5 conformation deduced for 5a and 5b (>exactly that, whose cyclization would be expected to lead to *l*-*l*l*t*it. 5: *H-t-tran* \rightarrow fuscd guainolide intermediate and thence to a (-8 *trans*-lactonized helenanolide) or type 3 or 4. However, extension of the proposal to biogenesis of (-X)c/s-lactonized helenanolides now presents difficulties since, if what holds true for the conformation of \sim chuhriolide and its relatives can be extended to (-8 <1,5-lactonized 4,5 epoxymelampolides, cyclization of their, low-energy \sim D- \sim , \sim D- \sim coilliermei, would lead to I, \sim H, 5-H c/s-used guainolides, not to compounds of type 6 or 8. The difficulty could be overcome by invoking the interconversion, under enzymatic control, of higher energy (-8 c/s-lactonized \sim l)- \sim l- \sim D- \sim 4,5-epoxymelampolide of 1) or \sim SD5 4,5-epoxygermacr-1(ltt)-cyclohexene conformers* or by assuming that lactone ring 1- \sim rmalione does not necessarily precede cyclization, in which case the conformational restrictions imposed on the 10-membered ring precursor might be less rigid.

The chemistry of *A. acaulis* is unique within that of all *A. ruficula* taxa (1. *D-olllttt*, 2. *WJODIXS0t175*—two species) and, 4, long (olios) whose lactone chemistry has been investigated [6, 18, 20, 21] in that the *terpenoids* isolated from it seem typical of the genus. Minor differences exist chiefly among which is the presence in fl-c various subspecies of *A. chamissonis* of 2,4-dihydroxy, helenanolides and their apparent absence in *A. aculeata* and *A. montana*. Also noteworthy is the apparent absence in *A. acaulis*, although looked for, of 1f and 2f which are present in almost all other *A. ruficula* taxa in; c, nated, ~, latile presence, so far unique in *trnld*. ~, *trmls*-lactonized helenanohdes, and the detection of mclamponides and n-an.~iused guaianolides presumed to be on the biogenetic path~a~ to the helenanolides found in the genus. However, information on the chemistry or the genus available so far seems to provide little evidence to or against the proposal that, within *A. ruficula*, the species most closely related to *A. aculeata* is

EXPERIMENTAL.

Extraction of Arnica acaulis Abo-c ground pH ~ 4 at auu, ~ (Walt.) B. Sf'..v, t 1.5kg, collctcd b3 John B Nelson on 2 Ma;

* For molecular mechanics calculations on corollformalions of C-6 and C-8 *trans*-lacionized *trans*, *trans*-germacradimnolides see ref. [38]. C-8 *cis*-lacionized germacradienolides seem to be unknown as the result of a revision in the *gerochemmtr* of several lactones preousl~ thought to belong in the rhN clas~ [39].

t :] ~ [112 l-ml d ll]IX[UIC o -ll-HII-(l-(CIO)].dltl [kl l] [~]5
 [4.- ~ <%kCFCII| t:tit'~ ch th it ~tl<l 2ti t' v, tlc! Cctl/h.l be ~cpaHt[ctl
 om~ pariali3 lit)lll ca;ll o[110! ~ < 11 (!fP[t t,- latalh
 chrorllattgrapit) lhc COII)f tlnlne< V,CIC chul!,l!c'l/c'd b) N2Mp.
 ,';pecWo13lCt) d bllla[t t-i <II;A[\]IXIt!C~
 }-rs l(I* 767 nigl ~+crc ~onib,ncd Radi<tl chromatography
 IS1 gC]. ~ I]n] n](-[t..]t)ltlC-]l i Clitl!Cn{ i]tl~ Yilt, ~ 111] [nlh
 alh--rcld 2'75,nig ot , ; ' lhiIX[UF.J 2C ancl 5b and 25t) ln2 tit a
 n]IXltlFc ctii!lttlInl- 2[titl] {}a b`,,zr,il lccF;s;aHlz.l[oi[io]~ ~ [lie
 2C ~b ll-(XIU'l, lit)n] ~2- (() !CktllC t[ll l/xttk!l,W1 111t'e D[II.'~t].
 mp 16>4 171"ldeC.L tR ~n~ ~ftl f ~>,t"~t). l(w: < tl) till;t"
 (MCF TM

(hromatograph) o- the 2- lib lp, !l[i].!re ~Scphadcx III-20, ('H(l,)lo(JH t: ~. -hl-c (n17 c' Ilia. SIID 224 !McOll III 2355 236,5 7441.2Y 241 [45j, ,u :~j 14,(i,2> 2.m [47 ttXMR 27! M11z tl)(i). ~i2f; .. ,:-)(ILL 7.t- ,dd.d ~ 2Hz.)1-6 .-superlnpolo.-cd on 4)I{ " II"; . l ? ib 11-2 . t" a. - tiz.){ 5 LO2~" 1{ ,i (l',t) caen- [)z t(-o and)-ISf 4 1".-tpx ~', -each t! i }-lts - [hc ~, {II)Otd 11] (~ICCOFdCIA III lhc h[eraHs/c 1 J J-2" IBdTiC 1dc?/!II]C;A, i{ln ~ll tils ~;tih-]a][CC st, ~n-<(OiHh-]I 1 tilt, triIIICfliO] I lit)III V;hi(III 10b mp 225 227 1s,4], <,, ~,,': .. i, <: cat ,c cm.m-c.d ~.h- ~,, H 2 and fl-h m *a ~!n !t-6 ~-,+air,clld :: tl,-2

Ir~i~ and [+It] 27 t~,:rc IIIIXhHC-, < 2a.b. IOa and II „k-lclt could not be separated :>[tlIShltloril HII0 illld~ lldUai con] (tillCI)j:~ by (‘‘ I hl.) prcccllce el 1] V~b; eslabilshed h~ c, ff,p, trlbon “Aith lIP, an[hc,tlTC sample lr~:), lI 2 [:l'.t= ~c<c[n]~,Ulle] (‘‘ INT gel 70 ~ CI[CI]I (‘‘ It, i-1 [~]~ dtLOl<~> Sg CHFKFpCBC acid IIIIXIUrC V~inch vt-as ~lIC[It]tIi t’ (t[%, Ptl[L't)hid 130I bc' chaFacteq/cd 5d[l,~t,t,to] { 1 I ~ ,h: ~lo i[“~, J- ~ [2 ~] wIH Me,(‘‘) g-210 lhg . >,-i, . : ill> II[CI] OI . i.i i_dih-,(t[P. Jhcjellatill2a rt-4] IIIC-h21r)H I (‘‘ro:f.,at.,Jr,iph\ el\he

mother liquors (hexane-Me₂CO 4:1) afforded 115 mg of a 5:1 mixture of **1a** and **3** and mixtures containing **1a**, **2a**, **3** and **4** in varying proportions.

Rechromatography of frs 31–33 (375 mg) (20 ml fractions, Si gel, 30 g, eluent 100 ml each of Me₂CO-CH₂Cl₂ 1:19, 1:9 and 3:17) gave in frs 10–18 mainly florilenalin acetate (**6b**, 150 mg) and in frs 19–21 a 1:2 mixture of **6b** and **7b**. Rechromatography of crude **6b** gave pure florilenalin acetate as a gum (100 mg). ¹H and ¹³C NMR in Tables 1 and 2; PCIMS *m/z* (%) 307 (M⁺ + 1, 100), 289 (M⁺ + 1 - H₂O, 15.8), 229 (M⁺ + 1 - H₂O - C₂H₄O₂, 33.9). The mixture of **6b** and **7b** could not be separated satisfactorily; the structure of **7b** was evident from the ¹H NMR spectrum (Table 1) and the PCIMS which exhibited additional strong peaks at *m/z* 309 (M⁺ + 1), 291 and 231.

Acknowledgement—We wish to thank Dr John B. Nelson for the plant collection.

REFERENCES

1. Maguire, B. (1943) *Brittonia* **4**, 386.
2. Herout, V. (1971) in *Pharmacognosy and Phytochemistry* (Wagner, H. and Hörhammer, L., eds) pp. 93–110.
3. Turner, B. L. and Powell, A. M. (1977) in *The Biology and Chemistry of the Compositae* (Heywood, V. H., Harborne, J. B. and Turner, B. L., eds) pp. 699–737. Academic Press, London.
4. Nordenstam, B. (1977) in *The Biology and Chemistry of the Compositae* (Heywood, V. H., Harborne, J. B. and Turner, B. L., eds) pp. 799–830. Academic Press, London.
5. Robinson, H. (1981) *Smithsonian Contrib. Botany* **51**, 1.
6. Evstratova, R. I., Bankovskii, A. I., Sheichenko, V. I. and Rybalko, K. S. (1971) *Khim. Prir. Soedin.* **7**, 270.
7. Poplawski, J., Holub, M., Samek, Z. and Herout, V. (1971) *Coll. Czechoslov. Chem. Commun.* **36**, 2189.
8. Holub, M., Samek, Z. and Toman, J. (1972) *Phytochemistry* **11**, 2627.
9. List, P. H. and Friebel, B. (1974) *Arzneim. Forsch.* **24**, 148.
10. Willuhn, G. and Herrmann, H. D. (1976) *Arch. Pharm.* **309**, 333.
11. Herrmann, H. D., Willuhn, G. and Hausen, B. M. (1978) *Planta Med.* **34**, 299.
12. Willuhn, G. and Herrmann, H. D. (1978) *Pharm. Ztg.* **123**, 1803.
13. Willuhn, G. and Herrmann, H. D. (1979) *Planta Med.* **37**, 325.
14. Willuhn, G., Pretzsch, G. and Wendisch, D. (1981) *Tetrahedron* **37**, 773.
15. Wiebcke, M., Kresken, J., Mootz, D. and Willuhn, G. (1982) *Tetrahedron* **38**, 2709.
16. Willuhn, G., Kresken, J. and Wendisch, D. (1983) *Planta Med.* **47**, 157.
17. Willuhn, G., Roettger, P.-M. and Mathiesen, V. (1983) *Planta Med.* **47**, 226.
18. Willuhn, G., Roettger, P.-M. and Wendisch, D. (1984) *Planta Med.* **35**.
19. Merfort, I. (1984) *Planta Med.* **107**.
20. Willuhn, G., Junior, I., Kresken, J., Pretzsch, G. and Wendisch, D. (1985) *Planta Med.* **398**.
21. Willuhn, G., Junior, I. and Wendisch, D. (1986) *Planta Med.* **349**.
22. Merfort, I., Marcinek, C. and Eggert, A. (1986) *Phytochemistry* **25**, 2901.
23. Waddell, T. G. and Geissman, T. A. (1969) *Phytochemistry* **8**, 2371.
24. Herz, W., Murari, R. and Blount, J. F. (1979) *J. Org. Chem.* **44**, 1873.
25. Samek, Z., Holub, M., Bloszyk, E. and Drozdz, B. (1979) *Z. Chem.* **19**, 449.
26. Rychlewska, U. (1982) *J. Chem. Soc. Perkin II*, 1641.
27. Romo, de Vivar, A., Pérez, A. L., Léon, C. and Delgado, G. (1982) *Phytochemistry* **21**, 2905.
28. Samek, Z. and Harmatha, J. (1978) *Coll. Czech. Chem. Commun.* **43**, 2779.
29. Herz, W., Bhat, S. V. and Sudarsanam, V. (1972) *Phytochemistry* **11**, 1829.
30. Herz, W., Prasad, J. S. and Blount, J. F. (1982) *J. Org. Chem.* **47**, 2206.
31. Gutiérrez, A. B., Oberti, J. C., Sosa, V. E. and Herz, W. (1987) *Phytochemistry*, (in press).
32. El-Feraly, F. S. (1983) *Phytochemistry* **22**, 2239.
33. Yoshitake, A. and Geissman, T. A. (1969) *Phytochemistry* **8**, 1753.
34. Pettit, G. R., Herald, C. L., Judd, G. F., Bolliger, G. and Thayer, P. S. (1975) *J. Pharm. Sci.* **64**, 2023.
35. Lee, K. H., Ibuka, T., Kozuka, M., McPhail, A. T. and Onan, K. D. (1974) *Tetrahedron Letters* 2287.
36. Kozuka, M., Lee, K. H., McPhail, A. T. and Onan, K. D. (1975) *Chem. Pharm. Bull. Jpn.* **23**, 1895.
37. Herz, W. (1977) *Israel J. Chem.* **16**, 32.
38. Watson, W. H. and Kashyap, R. P. (1986) *J. Org. Chem.* **51**, 2521.
39. Bohlmann, F., Jakupovic, J., Ahmed, M. and Schuster, A. (1983) *Phytochemistry* **22**, 1623.
40. Herz, W. and Högenauer, G. (1962) *J. Org. Chem.* **27**, 905.
41. Metwally, M. A. and Dawidar, A. M. (1985) *Phytochemistry* **24**, 1377.
42. Bohlmann, F., Niedballa, V. and Schulz, J. (1969) *Chem. Ber.* **102**, 864.
43. Bohlmann, F., Misra, L. N. and Jakupovic, J. (1985) *Chemistry* **24**, 1378.
44. Nuñez-Alarcon, J. (1971) *J. Org. Chem.* **36**, 3829.
45. Wollenweber, E. and Wassum, M. (1972) *Tetrahedron Letters* 797.
46. LeQuesne, P. W., Pastore, M. P. and Raffauf, R. E. (1976) *J. Nat. Prod.* **39**, 391.
47. Bondoni, A. L., Medina, J. E., Rondina, R. V. D. and Coussio, J. D. (1978) *Planta Med.* **34**, 328.
48. Das, K. C., Farmer, W. C. and Weinstein, B. (1970) *J. Org. Chem.* **35**, 3989.